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1. Introduction

Numerical simulations of laser-plasma wakefield (particle) accelerators [Geddes et al. (2009);
Tajima & Dawson (1979)] model the acceleration of electrons trapped in plasma oscillations
(wakes) left behind when an intense laser pulse propagates through the plasma. The goal
of these simulations is to better understand the process involved in plasma wake generation
and how electrons are trapped and accelerated by the wake as in Geddes (2005); Geddes et al.
(2004); Pukhov & ter Vehn (2002); Tsung et al. (2007; 2004). Understanding of such accelera-
tors, and their development, offers high accelerating gradients, potentially reducing size and
cost of new accelerators.

One operating regime of interest is where a trapped subset of electrons loads the wake and
forms an isolated group of accelerated particles with low spread in momentum and position
[Geddes et al. (2004)], desirable characteristics for many applications. The electrons trapped
in the wake may be accelerated to high energies, the plasma gradient in the wake reaching up
to a gigaelectronvolt per centimeter [Tajima & Dawson (1979)]. High-energy electron acceler-
ators power intense X-ray radiation to terahertz sources, and are used in many applications
including medical radiotherapy and imaging [Geddes et al. (2009)].

To extract information from the simulation about the quality of the beam, a typical ap-
proach is to examine plots of the entire dataset, visually determining the parameters neces-
sary to select a subset of particles, which is then further analyzed. This procedure requires
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laborious examination of massive data sets over many time steps using several plots, a rou-
tine that is unfeasible for large data collections. Demand for automated analysis is growing
along with the volume and size of simulations. Current 2D LWFA simulation datasets are
typically between 1GB and 100GB in size, but simulations in 3D are of the order of TBs. The
increase in the number of datasets and dataset sizes leads to a need for automatic routines to
recognize particle patterns as particle bunches (beam of electrons) for subsequent analysis as
in Ushizima et al. (2008).

Because of the growth in dataset size, the application of machine learning techniques for
scientific data mining is increasingly considered. In plasma simulations, Bagherjeiran & Ka-
math (2006) presented a comprehensive report on applying graph-based techniques for orbit
classification. They used the KAM classifier as in Yip (1991) to label points and components
in single and multiple orbits. Love & Kamath (2007) conducted an image space analysis of
coherent structures in plasma simulations. They used a number of segmentation and region-
growing techniques to isolate regions of interest in orbit plots. Both approaches analyzed
particle accelerator data, targeting the system dynamics in terms of particle orbits. However,
they did not address particle dynamics as a function of time or inspected the behavior of
bunches of particles.

A visual analysis of massive laser wakefield acceleration (LWFA) simulation data was ad-
dressed by Rübel et al. (2008), using interactive procedures to query the data. Sophisticated
visualization tools were provided to inspect the data manually. Rübel et al. have integrated
these tools to the visualization and analysis system VisIt (2009), in addition to utilizing effi-
cient data management based on HDF5 [Adelmann et al. (2007; 2005); Gosink et al. (2006);
H5Part (2009)], and the index/query tool FastBit [FastBit (2009)]. Rübel et al. (2009) proposed
automatic beam path analysis using a suite of methods to select particles in simulation data
and to analyze their temporal evolution. To enable researchers to accurately define particle
beams, the method computes a set of measures based on the path of particles relative to the
distance of the particles to a beam. To achieve good performance, this framework uses an
analysis pipeline designed to quickly reduce the amount of data that needs to be considered
in the actual path distance computation. As part of this process, region-growing methods are
utilized to detect particle bunches at single time steps. Efficient data reduction is essential
to enable automated analysis of large data sets as described in the next section, where data
reduction methods are steered to the particular requirements of our clustering analysis.

Ushizima et al. (2008) first described the application of a set of algorithms to automate
the data analysis and classification of particle beams in the LWFA simulation data, identifying
locations with high density of high energy particles. These algorithms detected high density
locations (nodes) in each time step, i.e. maximum points on the particle distribution for only
one spatial variable. Each node was correlated to a node in previous or later time steps by
linking these nodes according to a pruned minimum spanning tree (PMST). We call the PMST
representation “a lifetime diagram”, which is a graphical tool to show temporal information
on highly dense groups of particles in the longitudinal direction for the time series. Electron
bunch compactness was described by another step of the processing, designed to partition
each time step, using fuzzy clustering, into a fixed number of clusters. We combined the
lifetime diagram with the clustering results to locate spatially confined beams, demonstrating
the ability of the method to detect high quality beams, characterized by high energy and high
degree of spatial coherence. A reported drawback of the method in Ushizima et al. (2008)
is the inability to detect low energy beams due to the mechanism of privileging high energy

particles, therefore outputting incorrect scattered groups of particles with high energy instead
of compact group of particles with low energy.

This paper extends previous work by addressing beam detection, independent of the en-
ergy. We divide the investigation in two main steps: (a) detection of maximum density regions
of particles using both longitudinal and transversal direction of variation and (b) multidimen-
sional particle clustering over each time step to automatically detect isolated bunches of elec-
trons within resulting partitions. We calculate these partitions using normal mixture models,
followed by the selection of the best model according to a cluster compactness criteria. Each
clustering algorithm uses a multivariate analysis to identify high density groups of electrons,
iteratively searching for the best number of clusters to model the particle distribution. We
employ data representation and partitioning to detect electrons undergoing acceleration, us-
ing the powerful R statistical tools from Gentleman & Ihaka (2009) and have integrated the
data management method of Fastbit [FastBit (2009)] into the R analysis framework. Our main
contribution is the automatic detection of compact groups of particles from large, complex
and time-dependent scientific data sets of electron simulations. These groups are selected
for coherence in both momentum and spatial coordinates, which are characteristic of electron
beams that one wants to identify. In addition, we propose several graphical representations
of data for fast information assessment that will help guide later feature extractors to derive
simulation measurements. Our results show that the proposed framework can detect group
of particles that belong to the electron beam even if the particle bunch presents low energy.
This is important to allow comparison among many simulation runs with varying beam qual-
ity. We are able to automatically detect the beam and characterize it in terms of dispersion
measurements, that identifies the time steps where the bunch is most condensed and under
acceleration.

The next section (Sec.2) describes the datasets under investigation, the proposed approach
and implementation details. Sec.3 presents the results of combining data transformation, ge-
ometrical modeling and analysis with classification of electrons from simulation time series.
We conclude with discussions and future directions in Sec.4.

2. Material and methods

2.1 Particle acceleration simulations
LWFA simulations are used to model physical parameter variations, such as tuning of laser
energy and plasma characteristics, in order to determine the combination that will achieve the
desired small energy spread bunch, hence guiding and improving understanding of labora-
tory experiments. The simulations model the properties of a hydrogen plasma, which is an
ionized gas containing free electrons (not bound to a molecule) and positively charged ions.
As a laser pulse travels through the plasma, the electric field of the light separates electrons
and positively charged ions. While the positive ions are heavy and stay in place, the light
electrons are pushed away from the laser pulse creating a “bubble” of positively charged par-
ticles behind the pulse as in Geddes et al. (2004); Tsung et al. (2004). In this so-called blowout
regime [Pukhov & ter Vehn (2002)], a fraction of electrons can be trapped in the wave and
be accelerated, in the same direction as the laser pulse, until they outrun the wave. As the
accelerating structure travels at a speed less than the speed of light, the relativistic electrons
eventually slip into a decelerating region of the wake, stopping the acceleration process.

The most common algorithm used to simulate LWFA is particle-in-cell (PIC) codes [Bird-
sall et al. (1991)]. The PIC technique models the dynamics of particles and the electromagnetic
field in a simulation window that travels at the speed of light [Geddes et al. (2008; 2004); Tsung



Automated detection and analysis of particle beams in laser-plasma accelerator simulations 369

laborious examination of massive data sets over many time steps using several plots, a rou-
tine that is unfeasible for large data collections. Demand for automated analysis is growing
along with the volume and size of simulations. Current 2D LWFA simulation datasets are
typically between 1GB and 100GB in size, but simulations in 3D are of the order of TBs. The
increase in the number of datasets and dataset sizes leads to a need for automatic routines to
recognize particle patterns as particle bunches (beam of electrons) for subsequent analysis as
in Ushizima et al. (2008).

Because of the growth in dataset size, the application of machine learning techniques for
scientific data mining is increasingly considered. In plasma simulations, Bagherjeiran & Ka-
math (2006) presented a comprehensive report on applying graph-based techniques for orbit
classification. They used the KAM classifier as in Yip (1991) to label points and components
in single and multiple orbits. Love & Kamath (2007) conducted an image space analysis of
coherent structures in plasma simulations. They used a number of segmentation and region-
growing techniques to isolate regions of interest in orbit plots. Both approaches analyzed
particle accelerator data, targeting the system dynamics in terms of particle orbits. However,
they did not address particle dynamics as a function of time or inspected the behavior of
bunches of particles.

A visual analysis of massive laser wakefield acceleration (LWFA) simulation data was ad-
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Fig. 1. Level sets as a function of the momentum of simulation particles, for a time step known
a priori to contain a high quality beam (red), characterized by high momentum (high px) in a
compact envelope, given by x,y position.

et al. (2007)]. The properties of accelerated particle groups vary (e.g., duration in time, posi-
tion, momentum and momentum spread) and, rather than being prescribed as inputs, are a
consequence of a set of parameters defined before the simulation starts, similarly to laboratory
experiments.
The simulation data analyzed in this paper were produced by the massively parallel plasma
simulation code VORPAL [Nieter & Cary (2004)] developed by Tech-X Corporation and the
University of Colorado at Boulder. VORPAL offers a broad range of models and algorithms
for treating the interaction of charged particles with the electromagnetic field, including an
electromagnetic or electrostatic [Messmer & Bruhwiler (2006)] field solvers, and kinetic, fluid
and hybrid models for the plasma. While originally developed for modeling laser-wakefield
accelerators, VORPAL’s flexibility has enabled it to be applied to a broad range of prob-
lems, including electromagnetic cavities, laser-solid interaction, investigations of breakdown
in high-power wave guides, or electron cooling concepts, just to mention a few. VORPAL
was designed for parallelism and scalability, and it runs routinely on tens of thousands of
processors on leadership-class supercomputers at various National Supercomputing Centers.
Using HDF5 as the native data format, VORPAL’s output can be processed with the powerful
analysis tools like the ones reported here.

One way to identify simulation particles that were trapped at some point in time is by
looking later on at the particles that have high energy. The particles with the highest energy
levels are usually located in the first wake period, forming a compact bunch, as illustrated

by the red region in Figure 1. The yellow level sets (center) show particles that can also be
accelerated in wave buckets that follow the first wake. The selection of the particles of interest
(the highly accelerated ones) has typically been done by looking at the later time-steps of a
simulation and interactively selecting only those particles with a velocity that is larger than a
defined threshold [Geddes (2005); Rübel et al. (2008); Tsung et al. (2007; 2004)].

2.2 Simulation datasets
This chapter investigates datasets from 2D simulations that contain the (x,y) position of the
particles as well as their momentum in the x and y directions (px, py). The laser pulse and ac-
celerated particles propagate in the x−direction. Each simulation particle represents a group
of electrons, with weight (wt). Since no identifiers (id) are stored for the particles, the parti-
cle weights are used as identifiers throughout the analysis. If several particles have the same
weight in the simulation, these are not traced. Table 1 presents details of the datasets used in
our tests, from which we draw only traceable particles (unique identifier).

Dataset Particles (106) Timesteps Total Size (GB)
A 0.4 37 1.3
B 1.6 37 4.5
C 0.4 38 1.3
D 3.2 45 11
E 6 39 28

Table 1. Tested 2D simulation datasets.

Data access requires efficient readers, provided by H5Part [H5Part (2009)]. H5Part is a
veneer API on top of HDF5 that considerably simplifies reading and writing simulation data
to HDF5 files. In order to efficiently query large particle datasets, we utilize the capabilities
of FastBit, a state-of-the-art index/query system as in FastBit (2009); Wu et al. (2004; 2006).
FastBit resolves queries in a time proportional to the number of hits satisfying the query.
This capability is essential when dealing with datasets of hundreds of millions of particles,
where the interesting particles might only number in the hundreds or thousands. A naive
(non-indexed) scheme would need to load up the entire dataset to resolve the query, which
is prohibitively expensive for large datasets. This index/query system supports conditional
queries, e.g. “detect all particles such that (px > 1e10)&(x > 0)&(y > 5)”; this can be used to
select particles with interesting characteristics in multi-dimensional phase space. FastBit can
also track selected particles across time steps by issuing queries of the form id in (5,10,31),
which pulls out data for the three specific particles.

FastBit indices are stored within H5Part files and accessed using a custom C++ interface
called HDF5-FastQuery [HDF5-FastQuery (2009)]. All our analysis software is written in R.
Therefore, in order to utilize FastBit’s functionality within the R runtime, we extended the
RcppTemplate package [Samperi (2006)] to make function calls to the HDF5-FastQuery inter-
face. This saves us considerable time to load subsets of particle data, at least 6.6 times faster
than R-package hdf5. This is a considerable improvement over existing HDF5 packages in
R, which often constrain the user to load the entire HDF5 file or complete groups within the
file. In addition to efficient data access, our framework implements data reduction by using
physical domain knowledge, data analysis algorithms and clustering techniques as described
in the following sections.
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Fig. 1. Level sets as a function of the momentum of simulation particles, for a time step known
a priori to contain a high quality beam (red), characterized by high momentum (high px) in a
compact envelope, given by x,y position.

et al. (2007)]. The properties of accelerated particle groups vary (e.g., duration in time, posi-
tion, momentum and momentum spread) and, rather than being prescribed as inputs, are a
consequence of a set of parameters defined before the simulation starts, similarly to laboratory
experiments.
The simulation data analyzed in this paper were produced by the massively parallel plasma
simulation code VORPAL [Nieter & Cary (2004)] developed by Tech-X Corporation and the
University of Colorado at Boulder. VORPAL offers a broad range of models and algorithms
for treating the interaction of charged particles with the electromagnetic field, including an
electromagnetic or electrostatic [Messmer & Bruhwiler (2006)] field solvers, and kinetic, fluid
and hybrid models for the plasma. While originally developed for modeling laser-wakefield
accelerators, VORPAL’s flexibility has enabled it to be applied to a broad range of prob-
lems, including electromagnetic cavities, laser-solid interaction, investigations of breakdown
in high-power wave guides, or electron cooling concepts, just to mention a few. VORPAL
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simulation and interactively selecting only those particles with a velocity that is larger than a
defined threshold [Geddes (2005); Rübel et al. (2008); Tsung et al. (2007; 2004)].
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cle weights are used as identifiers throughout the analysis. If several particles have the same
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Dataset Particles (106) Timesteps Total Size (GB)
A 0.4 37 1.3
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Table 1. Tested 2D simulation datasets.

Data access requires efficient readers, provided by H5Part [H5Part (2009)]. H5Part is a
veneer API on top of HDF5 that considerably simplifies reading and writing simulation data
to HDF5 files. In order to efficiently query large particle datasets, we utilize the capabilities
of FastBit, a state-of-the-art index/query system as in FastBit (2009); Wu et al. (2004; 2006).
FastBit resolves queries in a time proportional to the number of hits satisfying the query.
This capability is essential when dealing with datasets of hundreds of millions of particles,
where the interesting particles might only number in the hundreds or thousands. A naive
(non-indexed) scheme would need to load up the entire dataset to resolve the query, which
is prohibitively expensive for large datasets. This index/query system supports conditional
queries, e.g. “detect all particles such that (px > 1e10)&(x > 0)&(y > 5)”; this can be used to
select particles with interesting characteristics in multi-dimensional phase space. FastBit can
also track selected particles across time steps by issuing queries of the form id in (5,10,31),
which pulls out data for the three specific particles.

FastBit indices are stored within H5Part files and accessed using a custom C++ interface
called HDF5-FastQuery [HDF5-FastQuery (2009)]. All our analysis software is written in R.
Therefore, in order to utilize FastBit’s functionality within the R runtime, we extended the
RcppTemplate package [Samperi (2006)] to make function calls to the HDF5-FastQuery inter-
face. This saves us considerable time to load subsets of particle data, at least 6.6 times faster
than R-package hdf5. This is a considerable improvement over existing HDF5 packages in
R, which often constrain the user to load the entire HDF5 file or complete groups within the
file. In addition to efficient data access, our framework implements data reduction by using
physical domain knowledge, data analysis algorithms and clustering techniques as described
in the following sections.



Machine Learning372

2.3 Proposed framework
Unlike image data, composed of pixel values at regular spaces, laser wakefield simulations
contain particles irregularly spaced in all dimensions. Scattered data is a common problem
in scientific data mining when trying to extract patterns in large datasets, particularly be-
cause the physical phenomenon is evolving over time [Kamath (2009)]. Data reduction of
large datasets is often mandatory before applying clustering algorithms due to their inherent
combinatorial complexity. Figure 2 shows our framework for detection of accelerated electron
bunches in LWFA simulations; the algorithms for data partitioning and pattern detection are
detailed in the next sections.
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��
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Fig. 2. Framework for data reduction and beam detection applied to each time step of data
sets generated by laser wakefield acceleration (LWFA) simulations.

The first step (B1) selects particles and time steps relevant for inspection from a n-time step
simulation dataset, discarding those particles unlikely to belong to the physical phenomenon
of interest. The pipeline obtains particle distribution (B2), using kernels to calculate an esti-
mate ( f (x,y, px)) of the probability density function. Next, we find parameters x, y, px for
which f is maximum, selecting a subset of particles that may correspond to trapped bunches
of electrons (B3). The following step (B4) then groups the simulation particles according to
normal mixture models, before applying maximum likelihood estimation and Bayes criteria.
The goal is to identify the most likely model and number of clusters that better refine the
previous beam candidate particles. The simulation contains several time steps and varying
number of particles per time step; we combine the result of beam detection for each time step
and calculate statistics of the time series by applying moving averages (B5) to characterize the
electron bunch.

2.3.1 High energy particles and densities (B1-B2)
Block B1 performs particle selection given a threshold in momentum in the x−direction, based
on the fact that the bunch of electrons of interest should be observed near px = 1011. We can
then eliminate the low energy particles for which px < 1010. The expected wake oscillation is
up to px = 109. Therefore this threshold excludes particles of the background plasma, while

(a) High quality beam (b) Low quality beam

Fig. 3. Kernel density estimation of Dataset A (left) and D (right) at a single time step, showing
high-density bunches (red): 3D representation of f (x,y, px) with heatmap colors representing
the particle density.

including all particles that could be in an accelerated bunch. The precise choice of the thresh-
old does not affect the result accuracy and a lower threshold could be used at higher compu-
tational cost [Ushizima et al. (2008)]. After eliminating low momentum particles, some time
steps (in general the first few time steps of the simulation) may not include a relevant amount
of particles for inspection. We calculate the simulation average number of particles above
threshold on px (µs) to determine the “representative” time steps, ti, for which there is a num-
ber of particles greater than µs, determining a smaller subset of time steps. We observed that
this constraint eliminates initial time steps, but maintains consecutive time steps throughout
the time series from tµs , the first time step for which the number of particles is greater than µs.
Again, this threshold can be adjusted to lower values.

It is necessary to compute the density of the particles given the (x,y, px) parameters of
the particles in each time step. The most widely used nonparametric density estimator is the
histogram, whose main disadvantage is its sensitivity to the placement of the bin edges, a
problem not shared by kernel density estimators, as described in Wand & Jones (1995). Kernel
density estimators are hence a valuable tool to identify subgroups of samples with inhomo-
geneous behavior and to recover the underlying structure of the dataset, while minimizing
binning artifacts. The PDF estimation also depends on the number of particles and a set of
smoothing parameters called bandwidth [Weissbach & Gefeller (2009)].

We estimate the probability density function (PDF) f (x,y, px) for time steps t = [tµs , T] in
B2, where T is the original number of time steps in the simulation, before extracting beam
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Block B1 performs particle selection given a threshold in momentum in the x−direction, based
on the fact that the bunch of electrons of interest should be observed near px = 1011. We can
then eliminate the low energy particles for which px < 1010. The expected wake oscillation is
up to px = 109. Therefore this threshold excludes particles of the background plasma, while

(a) High quality beam (b) Low quality beam

Fig. 3. Kernel density estimation of Dataset A (left) and D (right) at a single time step, showing
high-density bunches (red): 3D representation of f (x,y, px) with heatmap colors representing
the particle density.

including all particles that could be in an accelerated bunch. The precise choice of the thresh-
old does not affect the result accuracy and a lower threshold could be used at higher compu-
tational cost [Ushizima et al. (2008)]. After eliminating low momentum particles, some time
steps (in general the first few time steps of the simulation) may not include a relevant amount
of particles for inspection. We calculate the simulation average number of particles above
threshold on px (µs) to determine the “representative” time steps, ti, for which there is a num-
ber of particles greater than µs, determining a smaller subset of time steps. We observed that
this constraint eliminates initial time steps, but maintains consecutive time steps throughout
the time series from tµs , the first time step for which the number of particles is greater than µs.
Again, this threshold can be adjusted to lower values.

It is necessary to compute the density of the particles given the (x,y, px) parameters of
the particles in each time step. The most widely used nonparametric density estimator is the
histogram, whose main disadvantage is its sensitivity to the placement of the bin edges, a
problem not shared by kernel density estimators, as described in Wand & Jones (1995). Kernel
density estimators are hence a valuable tool to identify subgroups of samples with inhomo-
geneous behavior and to recover the underlying structure of the dataset, while minimizing
binning artifacts. The PDF estimation also depends on the number of particles and a set of
smoothing parameters called bandwidth [Weissbach & Gefeller (2009)].

We estimate the probability density function (PDF) f (x,y, px) for time steps t = [tµs , T] in
B2, where T is the original number of time steps in the simulation, before extracting beam



Machine Learning374

Fig. 4. Projections of beam candidate region detection (block B3) from timestep in dataset D
(top) and 2D particle density estimations (bottom) to confirm compactness of selected parti-
cles.

candidate regions. An estimation of the PDF is calculated using kernel density estimation
[Feng & Tierney (2009)] and defined on a grid with spacing ∆x = 0.5µm, ∆y = 0.5µm and
∆px ≈ 109. These parameters are selected based on the physical expectation of electron beam
size to be 2µm and momentum spread to be approximately 1010 [Geddes (2005); Geddes et al.
(2004); Pukhov & ter Vehn (2002); Tsung et al. (2004)]. This PDF will be used later for retrieval
of the maximum value and the first adjacent bins.

Figure 3 shows 3D densities that are the result of the calculated multivariate kernel density
estimators and illustrates the concepts of high and low quality beams. Notice that Fig.3(a)
presents a concentrated region in (x,y, px) and higher values of px in comparison with Fig.3(b),
which has scattered (red) groups with lower values of px, indicating a low-quality beam.
Next, we propose a method to detect these groups of particles, independently of the range of
energies they present.

2.3.2 Deriving maximum peaks (B3)
The task in B3 is to find particles at maximum values of f and their immediate vicinity to
obtain compact electron bunches in space and with limited dispersion in momentum, as em-
phasized in red in Figure 4. These criteria determine the ability to characterize the quality of
particle beams, which depends on the grouping of electrons in terms of their spatial parame-
ters as well as momentum in the longitudinal (x) and transverse (y) directions. The binning
used to calculate f may interfere in the beam quality descriptors if only the absolute maxi-
mum of the PDF is taken into account, e.g., the bins may separate a maximum peak into parts
if the binning is too small to contain the particles of interest. To prevent this undesirable ef-
fect, we adopt a tolerance parameter to select compact bunches and extract more than one

(a) (b)

Fig. 5. Comparison of particle selection with/without MVEE: extracting the orientation and
the axes of an enclosing ellipse from (a) produces (b), increasing the number of particles from
173 to 263. Colors indicate the density of particles, using only (x,y)-coordinates, and black
dots show potential particles to belong to the beam, according to the different methods.

maximum (beam candidate region) per time step. In addition, this is a way of accruing more
samples and detecting secondary beams when these are almost as prominent as the primary
beam, associated to the maximum of f .

During the searching for values that are approximately equal to max( f ), we keep not only
the maximum, but all bins where f ≥ u ∗ max( f ), where u is an uncertainty or tolerance pa-
rameter, here empirically set to 0.85. While this value enables the detection of the main and
the secondary beams (when present), lower values of u could be used to control the amount
of particles to be selected at a lower accuracy of beam position. From this point, we refer to
the subset of particles conditioned to u ∗ max( f ) and its adjacency, calculated for each time
step, as “beam candidates”.

Figure 4 (top) presents projections of Figure 3.b with their calculated beam candidates em-
phasized in red. These are the result of our first attempt to improve particle selection by using
an algorithm known as minimum volume enclosing ellipsoid as in Khachiyan & Todd (1993),
which is able to enclose previously selected particles and to include others based on a geo-
metrically defined polytope. Figure 5 illustrates the algorithm when applied to LWFA data,
showing the selected particles as black dots; these particles are not in the most dense region
(red) once the colors refers to (x,y)-density calculation. When including compactness in px,
the most dense region happens further ahead. As distinct from calculating center of mass
and forcing an ad hoc diameter or semi-major/minor axes, the minimum volume enclosing
ellipsoid (MVEE) algorithm [Khachiyan & Todd (1993); Kumar & Yildirim (2005); Moshtagh
(2009)] takes the subset of points and prescribes a polytope model to extrapolate a preliminary
sub-selection to other particles likely to be in the bunch. The MVEE algorithm is a semidefinite
programming problem and consists of a better approximation to the convexity of subsets of
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Fig. 4. Projections of beam candidate region detection (block B3) from timestep in dataset D
(top) and 2D particle density estimations (bottom) to confirm compactness of selected parti-
cles.

candidate regions. An estimation of the PDF is calculated using kernel density estimation
[Feng & Tierney (2009)] and defined on a grid with spacing ∆x = 0.5µm, ∆y = 0.5µm and
∆px ≈ 109. These parameters are selected based on the physical expectation of electron beam
size to be 2µm and momentum spread to be approximately 1010 [Geddes (2005); Geddes et al.
(2004); Pukhov & ter Vehn (2002); Tsung et al. (2004)]. This PDF will be used later for retrieval
of the maximum value and the first adjacent bins.

Figure 3 shows 3D densities that are the result of the calculated multivariate kernel density
estimators and illustrates the concepts of high and low quality beams. Notice that Fig.3(a)
presents a concentrated region in (x,y, px) and higher values of px in comparison with Fig.3(b),
which has scattered (red) groups with lower values of px, indicating a low-quality beam.
Next, we propose a method to detect these groups of particles, independently of the range of
energies they present.

2.3.2 Deriving maximum peaks (B3)
The task in B3 is to find particles at maximum values of f and their immediate vicinity to
obtain compact electron bunches in space and with limited dispersion in momentum, as em-
phasized in red in Figure 4. These criteria determine the ability to characterize the quality of
particle beams, which depends on the grouping of electrons in terms of their spatial parame-
ters as well as momentum in the longitudinal (x) and transverse (y) directions. The binning
used to calculate f may interfere in the beam quality descriptors if only the absolute maxi-
mum of the PDF is taken into account, e.g., the bins may separate a maximum peak into parts
if the binning is too small to contain the particles of interest. To prevent this undesirable ef-
fect, we adopt a tolerance parameter to select compact bunches and extract more than one
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Fig. 5. Comparison of particle selection with/without MVEE: extracting the orientation and
the axes of an enclosing ellipse from (a) produces (b), increasing the number of particles from
173 to 263. Colors indicate the density of particles, using only (x,y)-coordinates, and black
dots show potential particles to belong to the beam, according to the different methods.

maximum (beam candidate region) per time step. In addition, this is a way of accruing more
samples and detecting secondary beams when these are almost as prominent as the primary
beam, associated to the maximum of f .

During the searching for values that are approximately equal to max( f ), we keep not only
the maximum, but all bins where f ≥ u ∗ max( f ), where u is an uncertainty or tolerance pa-
rameter, here empirically set to 0.85. While this value enables the detection of the main and
the secondary beams (when present), lower values of u could be used to control the amount
of particles to be selected at a lower accuracy of beam position. From this point, we refer to
the subset of particles conditioned to u ∗ max( f ) and its adjacency, calculated for each time
step, as “beam candidates”.

Figure 4 (top) presents projections of Figure 3.b with their calculated beam candidates em-
phasized in red. These are the result of our first attempt to improve particle selection by using
an algorithm known as minimum volume enclosing ellipsoid as in Khachiyan & Todd (1993),
which is able to enclose previously selected particles and to include others based on a geo-
metrically defined polytope. Figure 5 illustrates the algorithm when applied to LWFA data,
showing the selected particles as black dots; these particles are not in the most dense region
(red) once the colors refers to (x,y)-density calculation. When including compactness in px,
the most dense region happens further ahead. As distinct from calculating center of mass
and forcing an ad hoc diameter or semi-major/minor axes, the minimum volume enclosing
ellipsoid (MVEE) algorithm [Khachiyan & Todd (1993); Kumar & Yildirim (2005); Moshtagh
(2009)] takes the subset of points and prescribes a polytope model to extrapolate a preliminary
sub-selection to other particles likely to be in the bunch. The MVEE algorithm is a semidefinite
programming problem and consists of a better approximation to the convexity of subsets of
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(a) High quality beam (b) Low quality beam

Fig. 6. Lifetime diagram of peaks, center of beam candidates, evolving in time for Dataset A
(left) and D (right) for all time steps.

particles that correspond to compact groups of electrons. After querying hypervolumes simi-
lar to the one in Figure 3, we applied the geometrical model to adjust the particle selection as
illustrated in Figure 5. By running the MVEE algorithm, we determine an ellipse as compact
as possible covering the data points of the beam candidate region, increasing the number of
samples without increasing the binning parameters. Here, we consider the problem of finding
a MVEE, that minimizes the logarithm of the determinant of H such that

(x − c)TH(x − c) ≤ n (1)

for a set of points x in Rn, an ellipsoid with center c and shape H [Khachiyan & Todd (1993)].
Further discussions on optimization of this algorithm can be found in Ahipasaoglu et al.
(2008).

In addition to methods to select beam particles and graphics for each time step, it is often
useful to track the bins occupied by the beam candidates by using lifetime diagrams. This
diagram show the whole simulation, i.e. a global representation of the temporal evolution
of beam candidate in bins. The diagram relates the time steps (t) to the relative position in
the simulation window (x), which corresponds to the maximum of f for each time step of the
simulation, as calculated in block B3. Figure 6(a) shows earlier time steps containing a bunch
of particles that remains at constant speed, with dispersion around t = 32 and formation of
a second bunch around t = 35. Figure 6(b) also shows time steps with formation of parti-
cle bunches that remains at constant speed earlier in the simulation, but the group disperses
around t = 28,followed by the formation of a second bunch around t = 34.
The algorithms described in this section focused on the location of a subset of simulated par-
ticles, expected to be in the maximum of a multivariate density distribution, dependent on
the particle properties. The next section complements the search for the beam by partition-
ing each time step to find subsets of particles, according to statistical modeling and clustering
techniques.

2.3.3 Clustering particles (B4)
Data partitioning is a conceptually intuitive method of organizing simulation particles into
similar groups given the absence of class labels. Since clustering is an unsupervised learning

method, evaluation and cluster quality assessment are valuable in interpreting classification
results. We include both clustering methods and cluster validity techniques applied to particle
acceleration to illustrate the applicability of dispersion measures to accurately evaluate an
intrinsic structure, namely, a coherent bunch of electrons.

In order to determine the number of clusters in each time step of the simulation while
testing statistical models with different numbers of components, we perform cluster analysis
using model-based clustering, where the model and the number of clusters are selected at run
time by mclust [Fraley & Raftery (2009)]. The model-based clustering algorithm postulates
a statistical model for the samples, which are assumed to come from a mixture of normal
probability densities. The calculation of normal mixture models considers different covariance
structures and different number of clusters [Haughton et al. (2009)] given an objective function
(score). The assumption of the number of clusters k entails a loss of generality, so we consider
a range of k in addition to parameters that control the shape of the class. These parametric
models are flexible in accommodating data as shown in Fraley & Raftery (2002) and consider
widely varying characteristics in estimating distributions.

By assuming a normal mixture model, we represent the data d, with n samples and k
components, considering a τk probability that an observation belongs to the kth component
and a multivariate normal distribution ϕk with mean vector µk and covariance matrix Σk.
The likelihood of d with n independent multivariate observations, represented by a Gaussian
mixture model with G multivariate mixture components [Fraley & Raftery (2007)] is

n

∏
i=1

G

∑
k=1

τk ϕk(di|µk,Σk) (2)

with priors conditioned to

τ ≥ 0;
G

∑
k=1

τk = 1. (3)

The maximum likelihood estimate uses expectation-maximization (EM) methods, which
rely on iterative two-fold processing: an E-step for calculating the conditional probability that
an observation belongs to a certain group given the parameters θk, and a M-step for computing
the parameters that maximize the log-likelihood given the previously calculated conditional
probability function [Fraley & Raftery (2002)]. In other words, EM determines the most likely
parameters θ1, ...,θk to represent a problem consisting of multivariate observations given by a
mixture of k underlying probability distributions [Fraley & Raftery (2006)].

The size of the LWFA datasets can compromise the efficiency of mixture model-based al-
gorithms due to mclust initialization [Fraley & Raftery (2002)], then we propose a random
sampling technique before calculating the mixture model. To illustrate such algorithm, Fig-
ure 7 uses artificial data, generated by two normal distributions g1(x,y) and g2(x,y) with 100
unlabeled samples each (Figure 7.a). In this example, we subsample the data by extracting
a quarter of its original samples and calculate mixture-models, varying the structure and the
number of the clusters (Figure 7.b). The result of the clustering provides labels for a quarter of
the samples (black and red dots in Figure 7.c) and these labels support a supervised learning
to classify the remaining samples as in Figure 7.d, a generalization procedure to extrapolate
the “learned” models to the full dataset by using expectation-maximization.

Instead of imposing k, which is not known a priori, the objects are associated to each other
according to a score that comes from the parameters, unknown quantities to be estimated from
the probability distributions [Vermunt & Magidson (2002)]. Figure 7.b shows the calculation
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(a) High quality beam (b) Low quality beam

Fig. 6. Lifetime diagram of peaks, center of beam candidates, evolving in time for Dataset A
(left) and D (right) for all time steps.

particles that correspond to compact groups of electrons. After querying hypervolumes simi-
lar to the one in Figure 3, we applied the geometrical model to adjust the particle selection as
illustrated in Figure 5. By running the MVEE algorithm, we determine an ellipse as compact
as possible covering the data points of the beam candidate region, increasing the number of
samples without increasing the binning parameters. Here, we consider the problem of finding
a MVEE, that minimizes the logarithm of the determinant of H such that

(x − c)TH(x − c) ≤ n (1)

for a set of points x in Rn, an ellipsoid with center c and shape H [Khachiyan & Todd (1993)].
Further discussions on optimization of this algorithm can be found in Ahipasaoglu et al.
(2008).

In addition to methods to select beam particles and graphics for each time step, it is often
useful to track the bins occupied by the beam candidates by using lifetime diagrams. This
diagram show the whole simulation, i.e. a global representation of the temporal evolution
of beam candidate in bins. The diagram relates the time steps (t) to the relative position in
the simulation window (x), which corresponds to the maximum of f for each time step of the
simulation, as calculated in block B3. Figure 6(a) shows earlier time steps containing a bunch
of particles that remains at constant speed, with dispersion around t = 32 and formation of
a second bunch around t = 35. Figure 6(b) also shows time steps with formation of parti-
cle bunches that remains at constant speed earlier in the simulation, but the group disperses
around t = 28,followed by the formation of a second bunch around t = 34.
The algorithms described in this section focused on the location of a subset of simulated par-
ticles, expected to be in the maximum of a multivariate density distribution, dependent on
the particle properties. The next section complements the search for the beam by partition-
ing each time step to find subsets of particles, according to statistical modeling and clustering
techniques.

2.3.3 Clustering particles (B4)
Data partitioning is a conceptually intuitive method of organizing simulation particles into
similar groups given the absence of class labels. Since clustering is an unsupervised learning

method, evaluation and cluster quality assessment are valuable in interpreting classification
results. We include both clustering methods and cluster validity techniques applied to particle
acceleration to illustrate the applicability of dispersion measures to accurately evaluate an
intrinsic structure, namely, a coherent bunch of electrons.

In order to determine the number of clusters in each time step of the simulation while
testing statistical models with different numbers of components, we perform cluster analysis
using model-based clustering, where the model and the number of clusters are selected at run
time by mclust [Fraley & Raftery (2009)]. The model-based clustering algorithm postulates
a statistical model for the samples, which are assumed to come from a mixture of normal
probability densities. The calculation of normal mixture models considers different covariance
structures and different number of clusters [Haughton et al. (2009)] given an objective function
(score). The assumption of the number of clusters k entails a loss of generality, so we consider
a range of k in addition to parameters that control the shape of the class. These parametric
models are flexible in accommodating data as shown in Fraley & Raftery (2002) and consider
widely varying characteristics in estimating distributions.

By assuming a normal mixture model, we represent the data d, with n samples and k
components, considering a τk probability that an observation belongs to the kth component
and a multivariate normal distribution ϕk with mean vector µk and covariance matrix Σk.
The likelihood of d with n independent multivariate observations, represented by a Gaussian
mixture model with G multivariate mixture components [Fraley & Raftery (2007)] is

n
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i=1

G

∑
k=1

τk ϕk(di|µk,Σk) (2)

with priors conditioned to

τ ≥ 0;
G

∑
k=1

τk = 1. (3)

The maximum likelihood estimate uses expectation-maximization (EM) methods, which
rely on iterative two-fold processing: an E-step for calculating the conditional probability that
an observation belongs to a certain group given the parameters θk, and a M-step for computing
the parameters that maximize the log-likelihood given the previously calculated conditional
probability function [Fraley & Raftery (2002)]. In other words, EM determines the most likely
parameters θ1, ...,θk to represent a problem consisting of multivariate observations given by a
mixture of k underlying probability distributions [Fraley & Raftery (2006)].

The size of the LWFA datasets can compromise the efficiency of mixture model-based al-
gorithms due to mclust initialization [Fraley & Raftery (2002)], then we propose a random
sampling technique before calculating the mixture model. To illustrate such algorithm, Fig-
ure 7 uses artificial data, generated by two normal distributions g1(x,y) and g2(x,y) with 100
unlabeled samples each (Figure 7.a). In this example, we subsample the data by extracting
a quarter of its original samples and calculate mixture-models, varying the structure and the
number of the clusters (Figure 7.b). The result of the clustering provides labels for a quarter of
the samples (black and red dots in Figure 7.c) and these labels support a supervised learning
to classify the remaining samples as in Figure 7.d, a generalization procedure to extrapolate
the “learned” models to the full dataset by using expectation-maximization.

Instead of imposing k, which is not known a priori, the objects are associated to each other
according to a score that comes from the parameters, unknown quantities to be estimated from
the probability distributions [Vermunt & Magidson (2002)]. Figure 7.b shows the calculation
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Fig. 7. Example of model-based clustering to clouds of points: (a) two Gaussian distributions
with no label assignment; (b) Bayesian information criteria calculation for different number
of clusters (k) and different models (E=equal volume and V=varying volume); (c) result of
classification using subset (25%) of the data; (d) generalization of model using expectation-
maximization.

of a score for different k and the maximum value of the curves imply the number of k the best
describe the samples.

This process establishes the inference on the sample rather than on the full population
[Fraley & Raftery (2002)]. This decision circumvents the bottleneck of the mclust initialization
by a sampling strategy to partition large datasets: we propose a biased sampling process that
ensures that the beam candidate region is in the sampled subset by guaranteeing that at least
10% (empirically chosen) of the samples belong to the high density particle volumes. We
cluster the particles using the normal mixture models for values of k ∈ [1,10] to follow an
ellipsoidal model with variable volume (VEV) [Banfield & Raftery (1993); Fraley & Raftery
(2009)]. We have tested other models as spherical, diagonal and ellipsoidal, which can have
equal or varying volume and shapes. However, VEV was the best algorithm for most of the
time steps in all the datasets, according to the Bayesian information criteria [Fraley & Raftery
(2009); Greene et al. (2008)]. We re-run the experiments to have clustering results using VEV
only, but a varying number of k. The resulting clusters from VEV are considered as the training
set to classify all the remaining samples by using EM to extrapolate parameters from training
samples.

The result of the clustering (B4) is combined with B3 by calculating the intersection be-
tween the beam candidates and the a cluster that contains most of the particles from the beam
candidates. In other words, we determine which cluster is most likely to contain the beam
candidates by majority voting among all possible clusters, finalizing the tasks in block B4.
The block B5 only analyzes the most compact group of particles that remains in the each time
step.

2.3.4 Cluster quality assessment (B4-B5)
One of our goals in investigating particle simulations is to detect the electron beam and to
characterize the dispersion of its particles in terms of spatial and momentum variables using
clustering algorithms. Since we do not know a priori the number of clusters that best describe
the particle grouping, we need some measure of goodness of fit to evaluate different clustering
algorithms. A standard approach is to obtain the number of clusters (k) by maximizing a
criterion function and to repeat the clustering procedure for different number of clusters.

We select k by maximizing the Bayesian information criterion (BIC) for a parametrized
clustering algorithm using mixture models, following an ellipsoidal, varying volume model.
The optimal BIC value considers the log-likelihood, the dimension of the data, and the number
of mixture components in the model. The criterion function must describe how well a given
clustering algorithm can match the data, defined as a function of the variable k.

Herein we will evaluate the goodness-of-fit of the clustering algorithms for k groups of
particles from each time step using BIC to guide model selection for a set of parameterized
mixture models with a varying number of classes. BIC adds a penalty to the log-likelihood
[Fraley & Raftery (2006)] by considering the number of parameters in a certain model M and
the number of observations (n) in the data set, with the form

BIC ≡ 2 loglikM(d,θ∗k )− (#params)M log(n) (4)

where loglikM(d,θ∗k ) is the maximized log-likelihood of the model with estimated parame-
ters θ∗k from the observations d and (#params)M number of independent parameters to be
estimated in M.

In addition to the evaluation of the clustering method (B4), we also want to verify if
our framework can capture the physical phenomena of trapping and acceleration, when the
beam is expected to be more compact. We propose the inspection of the particles in adjacent
time steps using moving averages [Shumway & Stoffer (2006)] to identify if the electrons are
grouped into stable bunches (B5).

The moving averages technique provides a simple way of seeing patterns in time series
data, smooths out short-term fluctuations and highlights longer-term trends. This is physi-
cally motivated as the bunches of interest move at speed approximately equal to the speed of
light, and hence are nearly stationary in the moving simulation window. We intersect parti-
cle bunches (b) at adjacent time steps, selecting the particles with the same identifier (id) and
calculate statistical parameters (ρ) of a three-point moving average (mvk), using the following
algorithm:

k ← 1
for t = 2 to n-1 do

idk ← id(bt−1) ∩ id(bt) ∩ id(bt+1)
mvk ← (bt−1|idk

+ bt|idk
+ bt+1|idk

)/3
ρ ← statistics(mvk)
k ← k + 1

end for

The particles of the bunch at time step t − 1, bt−1, indexed by idk, are called bt−1|idk
and

the function statistics calculates parameters such as the mean, variance and maximum values
from the moving averages. We use the plots in Figure 10, 13 and 14 to check the persistence of
particle bunches by looking at the evolution of statistical parameters as discussed in the next
section.

3. Results

Here, we apply the above-described algorithms to analyze laser-plasma wakefield accelera-
tion simulations, using the clustering techniques as part of a completely automated pipeline
to detect dense particle groups (“electron bunches”). The main contributions of this work, in
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Fig. 7. Example of model-based clustering to clouds of points: (a) two Gaussian distributions
with no label assignment; (b) Bayesian information criteria calculation for different number
of clusters (k) and different models (E=equal volume and V=varying volume); (c) result of
classification using subset (25%) of the data; (d) generalization of model using expectation-
maximization.

of a score for different k and the maximum value of the curves imply the number of k the best
describe the samples.

This process establishes the inference on the sample rather than on the full population
[Fraley & Raftery (2002)]. This decision circumvents the bottleneck of the mclust initialization
by a sampling strategy to partition large datasets: we propose a biased sampling process that
ensures that the beam candidate region is in the sampled subset by guaranteeing that at least
10% (empirically chosen) of the samples belong to the high density particle volumes. We
cluster the particles using the normal mixture models for values of k ∈ [1,10] to follow an
ellipsoidal model with variable volume (VEV) [Banfield & Raftery (1993); Fraley & Raftery
(2009)]. We have tested other models as spherical, diagonal and ellipsoidal, which can have
equal or varying volume and shapes. However, VEV was the best algorithm for most of the
time steps in all the datasets, according to the Bayesian information criteria [Fraley & Raftery
(2009); Greene et al. (2008)]. We re-run the experiments to have clustering results using VEV
only, but a varying number of k. The resulting clusters from VEV are considered as the training
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The result of the clustering (B4) is combined with B3 by calculating the intersection be-
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candidates. In other words, we determine which cluster is most likely to contain the beam
candidates by majority voting among all possible clusters, finalizing the tasks in block B4.
The block B5 only analyzes the most compact group of particles that remains in the each time
step.

2.3.4 Cluster quality assessment (B4-B5)
One of our goals in investigating particle simulations is to detect the electron beam and to
characterize the dispersion of its particles in terms of spatial and momentum variables using
clustering algorithms. Since we do not know a priori the number of clusters that best describe
the particle grouping, we need some measure of goodness of fit to evaluate different clustering
algorithms. A standard approach is to obtain the number of clusters (k) by maximizing a
criterion function and to repeat the clustering procedure for different number of clusters.

We select k by maximizing the Bayesian information criterion (BIC) for a parametrized
clustering algorithm using mixture models, following an ellipsoidal, varying volume model.
The optimal BIC value considers the log-likelihood, the dimension of the data, and the number
of mixture components in the model. The criterion function must describe how well a given
clustering algorithm can match the data, defined as a function of the variable k.

Herein we will evaluate the goodness-of-fit of the clustering algorithms for k groups of
particles from each time step using BIC to guide model selection for a set of parameterized
mixture models with a varying number of classes. BIC adds a penalty to the log-likelihood
[Fraley & Raftery (2006)] by considering the number of parameters in a certain model M and
the number of observations (n) in the data set, with the form

BIC ≡ 2 loglikM(d,θ∗k )− (#params)M log(n) (4)

where loglikM(d,θ∗k ) is the maximized log-likelihood of the model with estimated parame-
ters θ∗k from the observations d and (#params)M number of independent parameters to be
estimated in M.

In addition to the evaluation of the clustering method (B4), we also want to verify if
our framework can capture the physical phenomena of trapping and acceleration, when the
beam is expected to be more compact. We propose the inspection of the particles in adjacent
time steps using moving averages [Shumway & Stoffer (2006)] to identify if the electrons are
grouped into stable bunches (B5).

The moving averages technique provides a simple way of seeing patterns in time series
data, smooths out short-term fluctuations and highlights longer-term trends. This is physi-
cally motivated as the bunches of interest move at speed approximately equal to the speed of
light, and hence are nearly stationary in the moving simulation window. We intersect parti-
cle bunches (b) at adjacent time steps, selecting the particles with the same identifier (id) and
calculate statistical parameters (ρ) of a three-point moving average (mvk), using the following
algorithm:

k ← 1
for t = 2 to n-1 do

idk ← id(bt−1) ∩ id(bt) ∩ id(bt+1)
mvk ← (bt−1|idk

+ bt|idk
+ bt+1|idk

)/3
ρ ← statistics(mvk)
k ← k + 1

end for

The particles of the bunch at time step t − 1, bt−1, indexed by idk, are called bt−1|idk
and

the function statistics calculates parameters such as the mean, variance and maximum values
from the moving averages. We use the plots in Figure 10, 13 and 14 to check the persistence of
particle bunches by looking at the evolution of statistical parameters as discussed in the next
section.

3. Results

Here, we apply the above-described algorithms to analyze laser-plasma wakefield accelera-
tion simulations, using the clustering techniques as part of a completely automated pipeline
to detect dense particle groups (“electron bunches”). The main contributions of this work, in
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Fig. 8. Result of locating high-density bunches for one time step of dataset D: 3D scatter plot
of particles, color is proportional to the particle energy (px) and white blobs correspond to the
preliminary detection of beam candidate region as described in Sec.2.3.2.

comparison with the previous approach in Ushizima et al. (2008), are that we can perform
beam detection independent of the quality or energy of the beam. Thus compact groups of
particles can have either high momentum or low momentum, instead of only being able to cor-
rectly detect groups of particles exhibiting high momentum. This improvement stems from
determining particle distribution using kernel density estimators, which minimizes the sensi-
tivity of bin size assumptions and placement, enabling accurate detection of maximum values
of f (x,y, px). This is in contrast with the previous method that considered f as function of x
only. Also, while Rübel et al. (2008) relies on user interaction, here we automatically detect
compact groups of particles under acceleration.

We show that using the particle x-coordinate relative to the window size, we can keep
track of the maximum values of the kernel density functions and represent these points using
lifetime diagrams. Figure 6 shows the evolution of peaks from f (x,y, px), which will support
future work to restrict the search for compact bunches using clustering to specific regions
around the maximum values. Figure 8 illustrates the result of identifying beam candidate
from block B3 at a single time step from the dataset D, showing the (x,y, px)-coordinates of
particles and respective detected compact groups. The beam candidate region is represented
by a cloud of white dots, containing all the particles for which 0.85 ∗ max( f ) holds.

The application of geometrical models such as the MVEE to enclose the detected beam can-
didates shows how structure assumptions may interfere in the number of particles selected, as
illustrated in Figure 5. The advantage of this method is that it expands a previous restrictive
selection to other neighboring points that should be included in the beam candidate region.
As opposed to an approach that sets a fixed diameter, it also avoids an undesirable impact
on the particle spread. We report results considering a geometrical model that encompass the
beam candidate region by calculating the MVEE applied to preliminary selection of particles,
which was mostly consistent with the shape of the bunch. The geometry assumption may

Fig. 9. Result of beam detection for ti = 27 from dataset A: beam candidates in gray from
processing in block B3 (top), clustering using mixture models, with colors representing the
different partitions over a sampled subset (center) and final result of electron bunch detection,
with increased number of particles after generalization with EM-algorithm, from block B4
(bottom).

result in inclusion of outliers if the beam present different shapes; however, we eliminate out-
liers during the moving averages procedure, keeping particles more likely to be part of the
electron bunch.

We calculate model-based clusters for each time step, after retrieving the results from block
B1 and B3. We illustrate the partitions of one time step of all datasets in Figure 9, 11 and 12,
showing the phase space of a time step where the beam was expected to be compact. In Figure
9, the two top plots show the result of beam candidate selection, in gray, for dataset A as out-
put by block B3. The two center plots present different compact groups of particles given by
the mixture model, and the bottom plots give the final result of electron bunch selection (B4),
emphasized in red color. The result of B3 indicates potential clusters of particles, important
to guide the sampling and identify the cluster position, but the definition of particle parti-
tions that are connected and compact given x,y, px is only accomplished after B4, which finds
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rectly detect groups of particles exhibiting high momentum. This improvement stems from
determining particle distribution using kernel density estimators, which minimizes the sensi-
tivity of bin size assumptions and placement, enabling accurate detection of maximum values
of f (x,y, px). This is in contrast with the previous method that considered f as function of x
only. Also, while Rübel et al. (2008) relies on user interaction, here we automatically detect
compact groups of particles under acceleration.

We show that using the particle x-coordinate relative to the window size, we can keep
track of the maximum values of the kernel density functions and represent these points using
lifetime diagrams. Figure 6 shows the evolution of peaks from f (x,y, px), which will support
future work to restrict the search for compact bunches using clustering to specific regions
around the maximum values. Figure 8 illustrates the result of identifying beam candidate
from block B3 at a single time step from the dataset D, showing the (x,y, px)-coordinates of
particles and respective detected compact groups. The beam candidate region is represented
by a cloud of white dots, containing all the particles for which 0.85 ∗ max( f ) holds.

The application of geometrical models such as the MVEE to enclose the detected beam can-
didates shows how structure assumptions may interfere in the number of particles selected, as
illustrated in Figure 5. The advantage of this method is that it expands a previous restrictive
selection to other neighboring points that should be included in the beam candidate region.
As opposed to an approach that sets a fixed diameter, it also avoids an undesirable impact
on the particle spread. We report results considering a geometrical model that encompass the
beam candidate region by calculating the MVEE applied to preliminary selection of particles,
which was mostly consistent with the shape of the bunch. The geometry assumption may

Fig. 9. Result of beam detection for ti = 27 from dataset A: beam candidates in gray from
processing in block B3 (top), clustering using mixture models, with colors representing the
different partitions over a sampled subset (center) and final result of electron bunch detection,
with increased number of particles after generalization with EM-algorithm, from block B4
(bottom).

result in inclusion of outliers if the beam present different shapes; however, we eliminate out-
liers during the moving averages procedure, keeping particles more likely to be part of the
electron bunch.

We calculate model-based clusters for each time step, after retrieving the results from block
B1 and B3. We illustrate the partitions of one time step of all datasets in Figure 9, 11 and 12,
showing the phase space of a time step where the beam was expected to be compact. In Figure
9, the two top plots show the result of beam candidate selection, in gray, for dataset A as out-
put by block B3. The two center plots present different compact groups of particles given by
the mixture model, and the bottom plots give the final result of electron bunch selection (B4),
emphasized in red color. The result of B3 indicates potential clusters of particles, important
to guide the sampling and identify the cluster position, but the definition of particle parti-
tions that are connected and compact given x,y, px is only accomplished after B4, which finds
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Fig. 10. Beam quality assessment to evaluate the dispersion of particle parameters using the
time series in dataset A: the curves show the history of one bunch that forms around t = 22,
reaching maximum energy around t = 27.

the k-component varying-volume ellipsoidal mixture model clustering that best represent the
particles, using BIC as criterion function.

(a) Dataset B, t=21 (b) Dataset C, t=22

Fig. 11. Result of beam detection for ti = 21 from dataset B and ti = 22 from dataset C: beam
candidates in gray from processing in block B3 (top), clustering using mixture models, with
colors representing the different partitions over a sampled subset (center) and final result of
electron bunch detection, after generalization with EM-algorithm, from block B4 (bottom).

Next, we evaluate the compactness of the electron bunch (B5) by calculating moving aver-
ages (mvj) over the time series. Figures 10, 13 and 14 show the result of calculating statistics
from mvj, using the particles selected according to block B4. While the beam detection at each
time step may contain outliers, the intersection with adjacent time steps returns the core sub-
set of particles (idj) that persists at least for three time steps. At the top left of Figure 10, we
show the red and blue curves, with the maximum and mean value of px (red and blue, re-
spectively), for each time step. The distance between the red curve and the blue curve, at each
time step, is an indicator of the dispersion of the particles in the bunch as well as the length
of the yellow arrows (standard deviation of the mvj with respect to x, y, px or py). Also,
notice that the moving averages capture the local behavior of a particle bunch that persists
for at least three time steps, but do not guarantee that the bunch is present throughout the
simulation. There are time steps where the algorithm does not capture any beam, which cor-
respond to moving average equal to zero as in t = [28,34] from dataset D in Figure 14.a. The
period of non-bunch detection, mvj = 0, corresponds to the presence of peaks on f at different,
non-adjacent positions, which is correlated to the dispersion of the particles for that period. It
follows similar interpretation of the particle dispersion in terms of spatial parameters (x and
y) and energy (px and py) to other datasets. Figures 10, 13 and 14 demonstrate that the algo-
rithm automatically identifies the bunch over a range of simulation conditions and resulting
bunch qualities.

Our tests were conducted on an SGI Altix with 32 1.4 GHz Itanium-2 Processors and 180
GBytes of shared memory. The primary motivation for using this computing system is the
large memory; the current implementation of the mixture model clustering algorithms in
package mclust is fairly memory-intensive and does not work on standard workstations for
large datasets. The SGI Altix is a multi-user machine, thus computing times in different stages
of the framework are approximate. Our process of computing beam candidate regions (block
B3) is reasonably fast and could be easily incorporated into routine inspection as a prepro-
cessing step. The clustering computation is more expensive, and new implementations are
necessary to improve performance. The approximate computing times of beam candidate (in
seconds) and clustering (in minutes) for each dataset are organized as pairs with time in paren-
thesis: A=(15.6s, 31min), B=(66s, 20min), C=(24.3s, 42min), D=(295.8s, 116min) and E=(417.4s,
975min).

4. Conclusions and Future Work

Previous investigations from Ushizima et al. (2008) and Rübel et al. (2008) to find particle
bunches reported results using fixed spatial tolerance around centers of maximum compact-
ness and assumed ad hoc thresholding values to determine potential particle candidates in-
volved in the physical phenomena of interest. Ushizima et al. (2008) pointed out limitations
inherent to techniques that detects maximum values using only one-dimensional spatial ap-
proach (x-axis), which did not capture the most condensed structure when confined to de-
pressions between peaks in px or when dispersed in y.

The current approach circumvented most of these problems, since the algorithm searched
for compact high density group of particles using both spatial information, x and y, and mo-
mentum in the direction of laser propagation, px. We improved the detection of a high density
volume of particles by using the 3D kernel density, followed by the detection of its maximum
and enclosing the particle subsets using MVEE, thus generating subsets of particles which
are beam candidate regions. These subsets provided the position of the most likely cluster to
contain a compact electron bunch in a time step. We proposed the use of moving averages to
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Fig. 10. Beam quality assessment to evaluate the dispersion of particle parameters using the
time series in dataset A: the curves show the history of one bunch that forms around t = 22,
reaching maximum energy around t = 27.

the k-component varying-volume ellipsoidal mixture model clustering that best represent the
particles, using BIC as criterion function.

(a) Dataset B, t=21 (b) Dataset C, t=22

Fig. 11. Result of beam detection for ti = 21 from dataset B and ti = 22 from dataset C: beam
candidates in gray from processing in block B3 (top), clustering using mixture models, with
colors representing the different partitions over a sampled subset (center) and final result of
electron bunch detection, after generalization with EM-algorithm, from block B4 (bottom).

Next, we evaluate the compactness of the electron bunch (B5) by calculating moving aver-
ages (mvj) over the time series. Figures 10, 13 and 14 show the result of calculating statistics
from mvj, using the particles selected according to block B4. While the beam detection at each
time step may contain outliers, the intersection with adjacent time steps returns the core sub-
set of particles (idj) that persists at least for three time steps. At the top left of Figure 10, we
show the red and blue curves, with the maximum and mean value of px (red and blue, re-
spectively), for each time step. The distance between the red curve and the blue curve, at each
time step, is an indicator of the dispersion of the particles in the bunch as well as the length
of the yellow arrows (standard deviation of the mvj with respect to x, y, px or py). Also,
notice that the moving averages capture the local behavior of a particle bunch that persists
for at least three time steps, but do not guarantee that the bunch is present throughout the
simulation. There are time steps where the algorithm does not capture any beam, which cor-
respond to moving average equal to zero as in t = [28,34] from dataset D in Figure 14.a. The
period of non-bunch detection, mvj = 0, corresponds to the presence of peaks on f at different,
non-adjacent positions, which is correlated to the dispersion of the particles for that period. It
follows similar interpretation of the particle dispersion in terms of spatial parameters (x and
y) and energy (px and py) to other datasets. Figures 10, 13 and 14 demonstrate that the algo-
rithm automatically identifies the bunch over a range of simulation conditions and resulting
bunch qualities.

Our tests were conducted on an SGI Altix with 32 1.4 GHz Itanium-2 Processors and 180
GBytes of shared memory. The primary motivation for using this computing system is the
large memory; the current implementation of the mixture model clustering algorithms in
package mclust is fairly memory-intensive and does not work on standard workstations for
large datasets. The SGI Altix is a multi-user machine, thus computing times in different stages
of the framework are approximate. Our process of computing beam candidate regions (block
B3) is reasonably fast and could be easily incorporated into routine inspection as a prepro-
cessing step. The clustering computation is more expensive, and new implementations are
necessary to improve performance. The approximate computing times of beam candidate (in
seconds) and clustering (in minutes) for each dataset are organized as pairs with time in paren-
thesis: A=(15.6s, 31min), B=(66s, 20min), C=(24.3s, 42min), D=(295.8s, 116min) and E=(417.4s,
975min).

4. Conclusions and Future Work

Previous investigations from Ushizima et al. (2008) and Rübel et al. (2008) to find particle
bunches reported results using fixed spatial tolerance around centers of maximum compact-
ness and assumed ad hoc thresholding values to determine potential particle candidates in-
volved in the physical phenomena of interest. Ushizima et al. (2008) pointed out limitations
inherent to techniques that detects maximum values using only one-dimensional spatial ap-
proach (x-axis), which did not capture the most condensed structure when confined to de-
pressions between peaks in px or when dispersed in y.

The current approach circumvented most of these problems, since the algorithm searched
for compact high density group of particles using both spatial information, x and y, and mo-
mentum in the direction of laser propagation, px. We improved the detection of a high density
volume of particles by using the 3D kernel density, followed by the detection of its maximum
and enclosing the particle subsets using MVEE, thus generating subsets of particles which
are beam candidate regions. These subsets provided the position of the most likely cluster to
contain a compact electron bunch in a time step. We proposed the use of moving averages to
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(a) Dataset D, t=19 (b) Dataset E, t=23

Fig. 12. Result of beam detection for ti = 19 from dataset D and ti = 23 from dataset E: beam
candidates in gray from processing in block B3 (top), clustering using mixture models, with
colors representing the different partitions over a sampled subset (center) and final result of
electron bunch detection, after generalization with EM-algorithm, from block B4 (bottom).

identify periods of bunch stability, in the time series, and we derived dispersion measures to
characterize beam compactness and quality.

Our implementation of function calls to the HDF-FastQuery interface allowed us to load
data using FastBit in R, saving time while only loading subsets of particles that potentially
participate to the phenomenon of interest. Our results showed that we can assess the beam
evolution using both mathematical models and machine learning techniques to automate the
search for the beam using large LWFA simulation datasets. Application of hierarchical ap-
proaches as in the R packages hclust and mclust are prohibitive if not combined with sampling
methods. We present an algorithm to sample the simulation data, but Monte Carlo meth-
ods [Banfield & Raftery (1993)] could be used by adding a repetitive randomness process as
a way of guaranteeing representation of a beam candidate region and improvement of accu-
racy. Future evaluations may consider more sophisticated methods such as Balanced Iterative
Reducing and Clustering using Hierarchies (BIRCH) as in Zhang et al. (1996) and hierarchical
clustering based on granularity as in Liang & Li (2007), which are designed for very large data
sets. Further investigation should also include subspace clustering as in Kriegel et al. (2009)
once the large simulation datasets contain target regions that can be determined using the
techniques proposed in our framework.
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electron bunch detection, after generalization with EM-algorithm, from block B4 (bottom).
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(a) Dataset D

(b) Dataset E

Fig. 14. Beam quality assessment to evaluate the dispersion of particle parameters using the
time series in: (a) dataset D: the curves show the history of two bunches: one that forms at the
beginning of the simulation, compact and lower energy (t = [18,27]) and a second one with
broader dispersion in px and higher energy (t = [36,44]). The beam is not detected by the
algorithm from t = [28,34], represented by zero values in the four graphs; (b) dataset E: the
curves show the history of two bunches that form around t = 23, reaching maximum energy
and compactness around t = 34. The beam is not detected by the algorithms from t = [21,22]
and t = [29,31], represented by zero values.
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(a) Dataset D

(b) Dataset E

Fig. 14. Beam quality assessment to evaluate the dispersion of particle parameters using the
time series in: (a) dataset D: the curves show the history of two bunches: one that forms at the
beginning of the simulation, compact and lower energy (t = [18,27]) and a second one with
broader dispersion in px and higher energy (t = [36,44]). The beam is not detected by the
algorithm from t = [28,34], represented by zero values in the four graphs; (b) dataset E: the
curves show the history of two bunches that form around t = 23, reaching maximum energy
and compactness around t = 34. The beam is not detected by the algorithms from t = [21,22]
and t = [29,31], represented by zero values.
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Ushizima, D., Rübel, O., Prabhat, Weber, G., Bethel, E. W., Aragon, C., Geddes, C., Cormier-
Michel, E., Hamann, B., Messmer, P. & Hagen, H. (2008). Automated Analysis for
Detecting Beams in Laser Wakefield Simulations, 2008 Seventh International Conference
on Machine Learning and Applications, Proceedings of IEEE ICMLA’08. LBNL-960E.

Vermunt, J. & Magidson, J. (2002). Latent class cluster analysis, Applied latent class analysis
pp. 89–106.

VisIt (2009). Visit - free interactive parallel visualization and graphical analysis tool, https:
//wci.llnl.gov/codes/visit/.

Wand, M. P. & Jones, M. C. (1995). Kernel smoothing, Chapman and Hall/CRC.
Weissbach, R. & Gefeller, O. (2009). A rule-of-thumb for the variable bandwidth selection in

kernel hazard rate estimation.
Wu, K., Otoo, E. & Shoshani, A. (2004). On the performance of bitmap indices for high cardi-

nality attributes, VLDB, pp. 24–35.
Wu, K., Otoo, E. & Shoshani, A. (2006). Optimizing bitmap indices with efficient compression,

ACM Transactions on Database Systems 31: 1–38.
Yip, K. M. (1991). KAM: A System for Intelligently Guided Numerical by Computer, MIT Press.
Zhang, T., Ramakrishnan, R. & Livny, M. (1996). Birch: an efficient data clustering method for

very large databases, SIGMOD ’96: Proceedings of the 1996 ACM SIGMOD international
conference on Management of data, ACM, New York, NY, USA, pp. 103–114.
URL: http://dx.doi.org/10.1145/235968.233324



Automated detection and analysis of particle beams in laser-plasma accelerator simulations 389

Greene, D., Cunningham, P. & Mayer, R. (2008). Unsupervised learning and clustering, Ma-
chine learning techniques for multimedia pp. 51–90.

H5Part (2009). H5Part: a portable high performance parallel data interface to hdf5, https:
//codeforge.lbl.gov/projects/h5part/.

Haughton, D., Legrand, P. & Woolford, S. (2009). Review of three latent class cluster analysis
packages: Latent gold, polca and mclust, The American Statistician 63(1): 81–91.

HDF5-FastQuery (2009). Hdf5-fastquery: Accelerating complex queries on hdf
datasets using fast bitmap indices, http://www-vis.lbl.gov/Events/SC05/
HDF5FastQuery/index.html.

Kamath, C. (2009). Scientific Data Mining: A Practical Perspective, Society for Industrial and
Applied Mathematic (SIAM), Philadelphia, USA.

Khachiyan, L. & Todd, M. (1993). On the complexity of approximating the maximal inscribed
ellipsoid for a polytope, Math. Program. 61(2): 137–159.
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